สืบค้นงานวิจัย
Predictions of equilibrium solubility and mass transfer coefficient for CO2 absorption into aqueous solutions of 4-diethylamino-2-butanol using artificial neural networks
Meesattham S. - ไม่ระบุหน่วยงาน
ชื่อเรื่อง (EN): Predictions of equilibrium solubility and mass transfer coefficient for CO2 absorption into aqueous solutions of 4-diethylamino-2-butanol using artificial neural networks
ผู้แต่ง / หัวหน้าโครงการ (EN): Meesattham S.
บทคัดย่อ (EN): In the present work, artificial neuron network (ANN) based models for predicting equilibrium solubility and mass transfer coefficient of CO2 absorption into aqueous solutions of high performance alternative 4-diethylamino-2-butanol (DEAB) solvent were successfully developed. The ANN models show an outstanding predictive performance over the predictive correlations proposed in the literature. In order to predict the equilibrium solubility, the ANN model were developed based on three input parameters of operating temperature, concentration of DEAB and partial pressure of CO2. An outstanding prediction performance of 2.4% average absolute deviation (AAD) can be obtained (comparing with 7.1–8.3% AAD from the literature). Additionally, a significant improvement on predicting mass transfer coefficient can also be achieved through the developed ANN model with 3.1% AAD (comparing with 14.5% AAD from the existing semi-empirical model). The mass transfer coefficient is considered to be a function of liquid flow rate, liquid inlet temperature, concentration of DEAB, inlet CO2 loading, outlet CO2 loading, concentration of CO2 along the height of the column. © 2019
บทคัดย่อ: ไม่พบข้อมูลจากหน่วยงานต้นทาง
ภาษา (EN): en
เอกสารแนบ (EN): https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060145177&doi=10.1016%2fj.petlm.2018.09.005&partnerID=40&md5=ba2b1c99bf6c891f8ec21230097f96d7
เผยแพร่โดย (EN): มหาวิทยาลัยมหิดล
คำสำคัญ (EN): Mass transfer coefficient
เจ้าของลิขสิทธิ์ (EN): มหาวิทยาลัยมหิดล
หากไม่พบเอกสารฉบับเต็ม (Full Text) โปรดติดต่อหน่วยงานเจ้าของข้อมูล

การอ้างอิง


TARR Wordcloud:
Predictions of equilibrium solubility and mass transfer coefficient for CO2 absorption into aqueous solutions of 4-diethylamino-2-butanol using artificial neural networks
Meesattham S.
มหาวิทยาลัยมหิดล
ไม่ระบุวันที่เผยแพร่
Biosorption of heavy metal from aqueous solutions Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images Hevea B Serum Proteome Profiling Using Liquid Chromatography-Mass Spectrometry Semantic segmentation of artery-venous retinal vessel using simple convolutional neural network Prediction of aromatase inhibitory activity using the efficient linear method (ELM) Source-identifying biomarker ions between environmental and clinical Burkholderia pseudomallei using whole-cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF An economic evaluation of neonatal screening for inborn errors of metabolism using tandem mass spectrometry in Thailand Classification of p-glycoprotein-interacting compounds using machine learning methods An integrated system for fractionation and hydrolysis of sugarcane bagasse using heterogeneous catalysts in aqueous biphasic system Catalytic hydrogenation of CO2 for methanol production in fixed-bed reactor using Cu-Zn supported on gamma-Al2O3
คัดลอก URL
กระทู้ของฉัน
ผลการสืบค้นทั้งหมด โพสต์     เรียงลำดับจาก