สืบค้นงานวิจัย
Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees
Choi I. - ไม่ระบุหน่วยงาน
ชื่อเรื่อง (EN): Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees
ผู้แต่ง / หัวหน้าโครงการ (EN): Choi I.
บทคัดย่อ (EN): The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.
บทคัดย่อ: ไม่พบข้อมูลจากหน่วยงานต้นทาง
ภาษา (EN): en
เอกสารแนบ (EN): https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929485998&doi=10.1371%2fjournal.pcbi.1004185&partnerID=40&md5=39c09cafd55e5dd3878687bcb54cf487
เผยแพร่โดย (EN): มหาวิทยาลัยมหิดล
คำสำคัญ (EN): Models, Immunological
เจ้าของลิขสิทธิ์ (EN): มหาวิทยาลัยมหิดล
หากไม่พบเอกสารฉบับเต็ม (Full Text) โปรดติดต่อหน่วยงานเจ้าของข้อมูล

การอ้างอิง


TARR Wordcloud:
Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees
Choi I.
มหาวิทยาลัยมหิดล
ไม่ระบุวันที่เผยแพร่
Machine Learning Classification of p-glycoprotein-interacting compounds using machine learning methods Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations Unraveling the bioactivity of anticancer peptides as deduced from machine learning Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial HIV-1 envelope glycoproteins from diverse clades differentiate antibody responses and durability among vaccinees Accuracy of clinical diagnosis of dengue episodes in the RV144 HIV vaccine efficacy trial in Thailand Monoclonal antibodies, derived from humans vaccinated with the RV144 HIV vaccine containing the HVEM binding domain of herpes simplex virus (HSV) glycoprotein D, neutralize HSV infection, mediate anti tistr-inno_agri-machine Novel strategy to adapt simian-human immunodeficiency virus e1 carrying env from an rv144 volunteer to rhesus macaques: Coreceptor switch and final recovery of a pathogenic virus with exclusive r5 tro
คัดลอก URL
กระทู้ของฉัน
ผลการสืบค้นทั้งหมด โพสต์     เรียงลำดับจาก